Aerosol direct radiative effect of smoke over clouds over the southeast Atlantic Ocean from 2006 to 2009
نویسندگان
چکیده
The aerosol direct radiative effect (DRE) of African smoke was analyzed in cloud scenes over the southeast Atlantic Ocean, using Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Hadley Centre Global Environmental Model version 2 (HadGEM2) climate model simulations. The observed mean DRE was about 30–35 W m−2 in August and September 2006–2009. In some years, short episodes of high-aerosol DRE can be observed, due to high-aerosol loadings, while in other years the loadings are lower but more prolonged. Climate models that use evenly distributed monthly averaged emission fields will not reproduce these high-aerosol loadings. Furthermore, the simulated monthly mean aerosol DRE in HadGEM2 is only about 6 Wm−2 in August. The difference with SCIAMACHY mean observations can be partly explained by an underestimation of the aerosol absorption Ångström exponent in the ultraviolet. However, the subsequent increase of aerosol DRE simulation by about 20% is not enough to explain the observed discrepancy between simulations and observations.
منابع مشابه
Southeast Atlantic Ocean Aerosol Direct Radiative Effects Over Clouds: Comparison Of Observations And Simulations
Absorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation ab...
متن کاملEffect of Cloud Fraction on Near-Cloud Aerosol Behavior in the MODIS Atmospheric Correction Ocean Color Product
Characterizing the way satellite-based aerosol statistics change near clouds is important for better understanding both aerosol-cloud interactions and aerosol direct radiative forcing. This study focuses on the question of whether the observed near-cloud increases in aerosol optical thickness and particle size may be explained by a combination of two factors: (i) Near-cloud data coming from are...
متن کاملThe effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean.
Clouds developing in a polluted environment tend to have more numerous but smaller droplets. This property may lead to suppression of precipitation and longer cloud lifetime. Absorption of incoming solar radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently the largest uncertainty in evaluating climate forcing. Using large statistics of 1-km r...
متن کاملSatellite-derived direct radiative effect of aerosols dependent on cloud cover
Aerosols from biomass burning can alter the radiative balance of the Earth by reflecting and absorbing solar radiation1. Whether aerosols exert a net cooling or a net warming effect will depend on the aerosol type and the albedo of the underlying surface2. Here, we use a satellite-based approach to quantify the direct, top-of-atmosphere radiative effect of aerosol layers advected over the partl...
متن کاملMeasurement-based estimates of direct radiative effects of absorbing aerosols above clouds
The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially...
متن کامل